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Abstract

A new one-dimensional transport code named TASK/TX, which is able to describe dynamic behavior of tokamak
plasmas, has been developed. It solves simultaneously a set of flux-surface averaged equations composed of Maxwell’s
equations, continuity equations, equations of motion, heat transport equations, fast-particle slowing-down equations
and two-group neutral diffusion equations. The set of equations describes plasma rotations in both toroidal and poloidal
directions through momentum transfer and evaluates the radial electric field self-consistently. The finite element method
with a piecewise linear interpolation function is employed with a fine radial mesh near the plasma surface. The Streamline
Upwind Petrov–Galerkin method is also used for robust calculation. We have confirmed that the neoclassical properties
are well described by the poloidal neoclassical viscous force. The modification of density profile during neutral beam injec-
tion is presented. In the presence of ion orbit loss, the generation of the inward radial electric field and torque due to radial
current is self-consistently calculated.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It has been widely recognized that improving plasma confinement and achieving high performance plasmas
are crucially important for obtaining burning fusion plasma in ITER. The existence of transport barriers like
an edge transport barrier (ETB) and/or an internal transport barrier (ITB) is considered to be indispensable to
achieve and maintain high performance plasma. While various heat transport phenomena have been exten-
sively studied both experimentally and theoretically so far and various theoretical models have been proposed
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to explain and reproduce experimental observations, much less has been understood on particle transport. For
instance, peaking and modification of a density profile during NBI heating require quantitative analyses.

The importance of radial electric field and plasma rotation in the transport barrier formation is now widely
accepted. The quick transition from the L-mode to the H-mode (formation of ETB) is usually accompanied
with a rapid change of a radial electric field. Since the radial electric field is strongly coupled with the plasma
rotation through the radial force balance, the dynamic behavior of the transition is naturally regulated by an
inertial term in an equation of motion. Therefore a dynamic analysis of the barrier formation requires to solve
the equation of motion including the inertial term.

For conventional one-dimensional plasma transport analyses in toroidal plasmas, many researchers have
been using a set of flux-surface averaged diffusion equations, which is based on the flux-gradient relation, asso-
ciated with particle and heat flux. Many transport simulation codes based on this relation have been developed
so far. Some of them, such as the TRANSP code [1], the ASTRA code [2] and the TASK/TR code [3], are able
to describe the toroidal plasma rotation. The flux-gradient relation, however, implicitly assumes that the
poloidal rotation is always in equilibrium. For transient phenomena, typically faster than the ion–ion collision
time scale, it is necessary to solve the poloidal component of the equation of motion. We note that in this short
time scale even the neoclassical transport flux is not ambipolar [4,5].

As for the description of the radial electric field Er, three kinds of relations, which may govern it, have been
used in the literatures. First, the radial force balance equation determines Er mainly from the ion pressure gra-
dient and the plasma rotation. Secondly, the radial electric field is generated by the radial current. The radial
current equation, for singly charged ions, can be written as [6]
�0�?
e

o

ot
Er ¼ Ce � Ci ð1Þ
where �0 is the permittivity in a vacuum, �? the perpendicular dielectric constant and Ce and Ci the electron
and ion particle fluxes. Finally Er stems from only a little difference between the electron and ion densities
through Gauss’s law. In an equilibrium state or in the case of a slow change of a plasma, the force balance
equation determines the radial electric field, while in the case of a rapid change the equation of motion
perpendicular to both the radial direction and the magnetic field is reduced to Eq. (1) and determines
the time evolution of Er. Gauss’s law provides the very little difference in electron and ion densities neces-
sary for the radial electric field determined by other relations. Therefore it is obviously required that a self-
consistent analysis including the time-evolution of the radial electric field and poloidal rotation should be
carried out.

The purpose of this paper is to carry out a transport simulation describing the time-evolution of the radial
electric field and plasma rotations self-consistently. We have newly developed a one-dimensional transport
code TASK/TX, which mainly solves the flux-surface averaged two-fluid equations and the Maxwell’s equa-
tions. The former equations consist of continuity equations, equations of motion in radial, poloidal and toroi-
dal directions and heat transport equations for electrons and ions. The latter consist of Gauss’s law (Poisson’s
equation), Faraday’s law and Ampère’s law. The behavior of fast-particles and neutrals is described by simple
model equations. These equations are solved simultaneously. We describe the transport in the scrape-off layer
(SOL), which is important for the formation of the edge transport barrier, using one-dimensional one-point
model. We introduce the neoclassical effects into our code through the poloidal viscosity arising from the inho-
mogeneity of the magnetic field strength, although flux-surface averaged physical quantities are poloidally uni-
form. The poloidal viscosity induces the diffusion, resistivity, bootstrap current and Ware pinch. For the
anomalous particle transport, we describe it as the momentum transfer between electrons and ions, while
for the anomalous momentum and heat transport, we assume diffusive process with prescribed transport coef-
ficient profiles.

Many of recent tokamak transport codes [1–3] employ the magnetic flux coordinates in a toroidal geome-
try. Since the primary purpose of the present paper is to demonstrate that a new set of transport equations
actually works, however, we consider a tokamak plasma with a circular cross-section and a large aspect ratio
to approximate it by a cylindrical plasma. Effects of the toroidal geometry and the non-circular cross-section
will be taken into account in a subsequent paper, although we keep the poloidal viscosity due to the poloidal
inhomogeneity of the magnetic field, as we mentioned in the previous paragraph. We employ a cylindrical
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coordinates ðr; h;/Þ, where r is the radial coordinate, h the poloidal coordinate and / the axial coordinate
which corresponds to z=R with the axial length z and the periodic length 2pR.

We adopt the finite element method (FEM) in order to solve the set of equations numerically. The advan-
tages of the FEM are: (i) we can choose arbitrary size of space between the grid points, especially near the
plasma surface. (ii) various kinds of boundary conditions can be implemented without difficulty, (iii) it is easy
to implement the upwind technique in order to improve the numerical stability in the advection equation. In
order to comfortably impose the boundary conditions at the magnetic axis, we choose s ¼ r2 as the radial
coordinate in computation. Removing the first-order derivatives in terms of electrostatic and electromagnetic
potentials enhances the numerical stability. For the radial component of the equations of motion still keeping
the first derivative terms, we have introduced the Streamline Upwind Petrov–Galerkin (SUPG) method [7].
This method substantially suppresses numerical errors and thus improves the numerical stability.

The remainder of this paper is organized as follows. Section 2 describes the basic equations of the TASK/
TX code and the physics contained in the code. Section 3 presents the numerical method to solve the basic
equations. In Section 4, we demonstrate typical calculation results in a few situations and comparison of
the neoclassical effects against the analytic models. We also present the density profile modification due to
NBI and the effects of ion orbit loss. Conclusion and discussion are given in Section 5.

2. Transport models

2.1. Basic equations

We start from the collisional two-fluid equations derived by Braginskii [8]; the continuity equation, the
equations of motion, and the thermal transport equation. The terms of momentum exchange, perpendicular
viscosity, and thermal diffusivity come from not only the particle collisions but also the interactions with
turbulence.

Since the transport of particles and heat along the magnetic field line is much faster than that across the flux
surfaces, the variation of physical quantities on a magnetic surface is small, qi=L and m=X where qi is the ion
thermal Larmor radius, L the radial scale length, m the collisionality and X the cyclotron frequency [9]. This is
equivalent to an expansion in the ratio of perpendicular to parallel heat conductivity or diffusion coefficients.
Therefore we consider the flux-surface averaged quantities: X ðr; tÞ � ð1=4p2Þ

R 2p
0

dh
R 2p

0
d/eX ðr; h;/; tÞ. By inte-

grating the two-fluid equations over h and /, we obtain a flux-surface averaged two-fluid equations in the low-
est order of qi=L and m=X. More detail of the derivation is given in Appendix A.

We keep the poloidal viscosity, which stems from the poloidal asymmetry of the magnetic field strength [9],
because it plays an important role in producing the neoclassical transport. Finally we assume that the plasma
is composed of electrons, bulk ions, beam ions and neutrals; impurities are neglected in the present analysis,
for simplicity.

For electrons and bulk ions, the one-dimensional two-fluid equations of motion are taken for the radial
flow usr, poloidal and toroidal rotations ush and us/, in addition to the continuity and the heat transport equa-
tions for the density ns and the internal energy 3=2nsT s as follows:
ons

ot
¼ � 1

r
o

or
ðrnsusrÞ þ Ss; ð2Þ

o

ot
ðmsnsusrÞ ¼ �

1

r
o

or
ðrusrmsnsusrÞ þ

1

r
msnsu2

sh þ esnsðEr þ ushB/ � us/BhÞ �
o

or
ðnsT sÞ; ð3Þ

o

ot
ðmsnsushÞ ¼ �

1

r2

o

or
ðr2usrmsnsushÞ þ

1

r2

o

or
r3msnsls

o

or
ush

r

� �� �
þ esnsðEh � usrB/Þ þ F NC

sh þ F C
sh

þ F W
sh þ F L

sh þ F N
sh þ F CX

sh ; ð4Þ
o

ot
ðmsnsus/Þ ¼ �

1

r
o

or
ðrusrmsnsus/Þ þ

1

r
o

or
rmsnsls

ous/

or

� �
þ esnsðE/ þ usrBhÞ þ F C

s/ þ F W
s/ þ F L

s/

þ F N
s/ þ F CX

s/ ; ð5Þ
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o

ot
3

2
nsT s

� �
¼ � 1

r
o

or
5

2
rusrnsT s

� �
þ 1

r
o

or
rnsvs

oT s

or

� �
þ usr

o

or
nsT s þ esnsðEhush þ E/us/Þ þ P C

s þ P B
s

þ P L
s þ P R

s þ P RF
s ; ð6Þ
where the subscript s denotes the particle species and ms and es are the mass and charge, respectively. The per-
pendicular viscosity ls and thermal conductivity vs represent anomalous transport due to turbulence. The par-
ticle source Ss, neoclassical viscous force F NC

s , classical collisional momentum transfer F C
s , forces due to the

interaction with turbulent electric field F W
s , parallel transport loss in the SOL region F L

s , friction force with
neutrals F N

s , charge exchange force F CX
s , collisional energy transfer power P C

s , heating power from NBI P B
s ,

collisional energy loss power P L
s , bremsstrahlung power P R

s and direct RF heating power P RF
s are calculated

with local quantities and will be explained in detail later.
Next we consider the equations for beam ions. In our transport model, the momentum input from NBI

increases the toroidal velocity of beam ions and then through collisional momentum transfer between thermal
species and beam ions net heating terms emerge in heat transport equations. For the beam ions, the radial
convection and diffusion are usually much slower than the slowing-down process and neglected for simplicity.
We consider the equations of the beam ion density nb produced by the neutral beam and the poloidal and
toroidal rotations ubh and ub/, written in the form
onb

ot
¼ Sb; ð7Þ

o

ot
ðmbnbubhÞ ¼ ebnbEh þ F C

bh þ F L
bh þ F N

bh þ F CX
bh ; ð8Þ

o

ot
ðmbnbub/Þ ¼ ebnbE/ þ F C

b/ þ F L
b/ þ F N

b/ þ F CX
b/ þ F B

b/; ð9Þ
where F B
b/ denotes the momentum input from the beam neutrals.

Neutrals in a plasma have a crucial role to determine the plasma density through ionization and the ion
momentum and energy loss through charge exchange. The velocity distribution function of neutrals is actually
important and the Monte Carlo method is usually used for neutral transport analyses. For simplicity, how-
ever, in the present code we describe the behavior of two-group neutrals by a set of diffusion equations:
one is slow neutrals with the order of room temperature and the other is fast neutrals with the order of ion
temperature. Frequent charge exchange reactions between neutrals and plasma ions lead to a random walk
and then diffusion to the center of the plasma [10].

We therefore solve the diffusion equations for two-group neutrals composed of slow and fast neutrals, n01

and n02, respectively, in the form
on0s

ot
¼ 1

r
o

or
rD0s

on0s

or

� �
þ S0s; ð10Þ
where the subscript 0s denotes the neutral species of slow ðs ¼ 1Þ or fast ðs ¼ 2Þ and S0s is the sum of the
source and sink term which will be given in Eqs. (29) and (30).

As already mentioned in Section 1, the radial electric field plays a very important role in describing rapid
phenomena and plasma rotations self-consistently. In order to take into account the formation of the radial
electric field, we should consider the charge separation. The loss of fast particles also induces the charge sep-
aration. We do not assume the quasi charge neutrality but solve the Poisson’s equation. When the time var-
iation of the charge density is not zero, we have to keep the displacement current in Ampère’s law because
r �~j 6¼ 0, where j denotes the current density. Based on the above consideration, we should finally couple
the transport equations with the averaged Maxwell’s equations composed of the Poisson’s equation, Faraday’s
law and Ampère’s law for the radial, poloidal and toroidal electric fields, Er, Eh and E/, and the poloidal and
toroidal magnetic fields Bh and B/ as follows:
1

r
o

or
ðrErÞ ¼

1

�0

X
s

esns; ð11Þ
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1

c2

oEh

ot
¼ � oB/

or
� l0

X
s

esnsush; ð12Þ

1

c2

oE/

ot
¼ 1

r
o

or
ðrBhÞ � l0

X
s

esnsus/; ð13Þ

oBh

ot
¼ oE/

or
; ð14Þ

oB/

ot
¼ � 1

r
o

or
ðrEhÞ; ð15Þ
where l0 is the permeability in a vacuum and c is the speed of light.
As will also be discussed in Section 3.5, spatial second-order derivatives are more favorable than first-order

derivatives from a numerical stability point of view; we therefore employ a form of Maxwell’s equations with-
out first-order derivatives by the use of electrostatic and electromagnetic potentials,
0 ¼ 1

r
o

or
r
oU
or

� �
þ 1

�0

X
s

esns; ð16Þ

1

c2

o _Ah

ot
¼ o

or
1

r
o

or
ðrAhÞ

� �
þ l0

X
s

esnsush; ð17Þ

1

c2

o _A/

ot
¼ 1

r
o

or
r
oA/

or

� �
þ l0

X
s

esnsus/; ð18Þ

oA/

ot
¼ _A/; ð19Þ

oAh

ot
¼ _Ah; ð20Þ
where U is the electrostatic potential, Ah and A/ the poloidal and toroidal electromagnetic potentials. Eqs. (19)
and (20) are the definitions of _A/ and _Ah. The relations between fields and potentials are given by
Er ¼ �
oU
or

; Eh ¼ �
oAh

ot
¼ � _Ah; E/ ¼ �

oA/

ot
¼ � _A/;

Bh ¼ �
oA/

or
; B/ ¼

1

r
o

or
ðrAhÞ:

ð21Þ
By solving a set of 20 equations simultaneously, we describe the time-evolution of a tokamak plasma and,
thus, various waves in a plasma can be potentially described. In the present model, however, the plasma oscil-
lation and the shear Alfvén waves never appear because kk ¼ 0 for flux-surface averaged quantities. Other elec-
tromagnetic waves, O and X waves, have frequencies higher than MHz. Since we use full-implicit method as
the time integration method as will be described in Section 3.4, we can ignore these waves for a time step
J 10�6 s. Therefore we can simulate and clarify the plasma behavior in transport time scales.

2.2. Physics models in the model equations

2.2.1. Particle source

The particle source terms in Eqs. (2) and (7) are written as follows:
Se ¼ ðn01 þ n02Þhrionvine � SL
e þ ð1� fCXÞ

P b

Eb

; ð22Þ

Si ¼
1

Z i

ðn01 þ n02Þhrionvine � fCX

P b

Eb

þ mbnb � SL
i ; ð23Þ

Sb ¼
P b

Eb

� mbnb � SL
b ; ð24Þ
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where rion is the ionization cross section and thus hrionvi denotes the ionization rate, Z i the charge of ions, and
SL

e and SL
b the electron and beam ion losses due to parallel transport in the SOL region, which will be explained

in detail in the next section. SL
i also denotes the ion parallel loss in the SOL and is connected with SL

e and SL
b

through the relation
SL
e ¼ Z iS

L
i þ ZbSL

b :
There are three basic atomic processes leading to beam neutral absorption: charge exchange with the cross-
section rCX, ionization by ions with rion, and ionization by electrons [10]. These processes have different
cross-sections dependent on the energy of injected beam atoms. In general, the cross-section of electron ion-
ization is negligible because it is much smaller than rCX in lower energy range, typically K 100 keV, and also
smaller than rion in higher energy range, typically J 50 keV. Then the processes that we now consider in the
code are, using subscripts b for beam,
Charge exchange Db þ Dþ ! Dþb þ D

Ionization by ions Db þ Dþ ! Dþb þ Dþ þ e:
Below about 90 keV, charge exchange is the most effective process for a deuterium beam. Above this energy,
however, ionization by ions becomes dominant. The cross-section of the charge exchange is given by [11]
rCX ¼
6:937� 10�19ð1� 0:155log10

bEÞ
1þ 0:1112� 10�14bE3:3

; ð25Þ
where bE is defined as bE ¼ E=Ai, and E denotes the energy of the interesting species and Ai denotes its atomic
mass number. The cross-section of the ion ionization is expressed as
rion ¼ 3:6� 10�16 log10ð0:1666bEÞbE ; for bE > 150 keV

log10rion ¼ �0:8712ðlog10
bEÞ2 þ 8:156log10

bE � 38:833; for bE < 150 keV:
Therefore the fraction of charge exchange process fCX is given by fCX ¼ rCX=ðrCX þ rionÞ.
The power deposition density and the beam energy are expressed by P b and Eb, respectively. The quantity

P b=Eb represents the number density of ions kicked by the beam neutrals per second. The slowing-down rate
of the beam ions mb is given by [12]
mb ¼
3

2
mbe ln 1þ Eb

Ec

� �3=2
" #( )�1
where mbe is the collisionality of beam ions with electrons and will be given in Section 2.2.3. Ec is the critical
beam energy
Ec ¼
3p1=2

4

� �2=3
mi

me

� �1=3 mb

mi

T e;
and the electron and ion heating rates are equal when Eb ¼ Ec.
In present tokamaks, there are two types of NBI systems: tangential NBI and perpendicular NBI. The for-

mer contributes to not only the collisional heating but also the momentum input, while the latter contributes
to only the heating. The TASK/TX code assumes that the tangential NBI gives the momentum to the back-
ground plasma only in the toroidal direction. Then the injection rate of toroidal momentum is expressed as
F B
b/ ¼ mbvb

P bk

Eb

;

where P bk is the tangential component of the NBI power.
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As for the ionization rate, we employ an approximate expression [13]
hrionvi ¼ 10�11ðT e=U ionÞ1=2

U 3=2
ion ð6þ T e=U ionÞ

expð�U ion=T eÞ;
where U ion is the ionization energy and T e and U ion both in eV. We note that this expression is valid for
0:02 K T e=U ion K 100.

The charge exchange collision between ions and neutrals causes the momentum loss of ions, although the
total particle number of ions and neutrals does not change. By using Eq. (25), the charge exchange rate has
been approximated as
hrCXvi ¼ rCX

8T i

pmi

� �1=2

:

The charge exchange forces acting on ions are expressed as
F CX
ih ¼ �nimiðn01 þ n02ÞhrCXviuih;

F CX
i/ ¼ �nimiðn01 þ n02ÞhrCXviui/;

F CX
bh ¼ �nimiðn01 þ n02ÞhrCXviubh;

F CX
b/ ¼ �nimiðn01 þ n02ÞhrCXviub/:
2.2.2. Particle loss and recycling in the SOL
While in a plasma inside the last closed flux surface (LCFS) all the magnetic field lines are confined, field

lines in a SOL region no longer make closed flux surfaces and a SOL plasma flows along the field lines towards
the poloidal limiter or divertor. In order to describe this parallel transport, we introduce particle, momentum
and heat losses in the SOL region of a < r < b, where a and b are the minor radius of the plasma and of the
wall, respectively.

Since it requires long computation time to solve a two-dimensional fluid equation, various kinds of reduced
models have been proposed to analyze the transport in the SOL. It is reported that the two-point model for
SOL and divertor plasmas based on integral fluid equations can easily reproduce static characteristics
observed in experiments [14]. The two-point model is also suitable for coupling with the core transport code
[15]. Since the model cannot deal with the poloidal asymmetry of the SOL, the five-point model [16] has been
recently proposed. In the present analysis, however, the major purpose to describe the SOL together with the
core is to provide appropriate boundary conditions at the plasma surface and to analyze the radial structure of
transition region between the core and SOL. We therefore employ a simple one-point model.

It is found in some papers that this one-point model has been used coupled with the transport code to solve
a whole plasma [17,18]. In these simulations, convection loss mechanism is considered for particle and heat
losses. The mechanism of the electron heat loss is, however, governed by a different physics, conduction, so
that the heat transport in the SOL is much faster than the particle transport. We then include both convective
and conductive loss mechanisms in our model.

It is now assumed that the particle loss time is proportional to the distance from the plasma surface to the
divertor along the field line divided by the ion sound speed Cs � ðZ iT e=mi þ 3T i=miÞ1=2. Based on this assump-
tion, the particle loss rate can be evaluated as
mL ¼
kLCs

L
gðrÞ;
where kL is the numerical factor alleviating the sound speed, L is the characteristic length in the direction of
the magnetic field line in the SOL given by 2pqR and gðrÞ is a smoothing function chosen for stable numerical
calculation. From observations in experiments, kL ¼ 0:3 is usually chosen [19]. If gðrÞ ¼ 1, the magnitude of mL

jumps up at the plasma surface because mL ¼ 0 in the core and this causes a serious numerical problem in the
FEM analysis. To avoid the problem, we have introduced the smoothing function gðrÞ, given by
gðrÞ ¼ q2

1þ q2
;

where q � ðr � aÞ=d for r P a and q � 0 for r < a, and d is typically chosen as the order of the banana width.
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According to Spitzer and Härm [20], the electron heat conduction along the field line can be written as [14],
qekð‘Þ ¼ �j0T 5=2
e

oT e

o‘
; ð26Þ
where qek is the parallel heat flux density, ‘ is the distance along the magnetic field line and
j0 ¼
ð4p�0Þ2

m1=2
e Zeff e4 ln Ke

; ð27Þ
where Zeff is the effective charge of the plasma and ln Ke the Coulomb logarithm of electron collisions defined
by [21]
ln Ke ¼ 37:8� 1

2
ln

ne

m�3

� �
þ ln

T e

keV

� �
: ð28Þ
If we assume that qek is used in a heat diffusion equation and the scale length of the temperatures is represented
by L, we obtain the electron heat loss rate
mLT e ¼ kLT e

j0T 5=2
e

L2ne

gðrÞ;
where kLT e the numerical factor which in our case is taken as unity. As in the case of the particle loss, mLT e is
multiplied by the alleviation function gðrÞ.

When we consider the case of the ion heat loss, from Eq. (27) j0 of ions is obviously smaller than that of
electrons by a factor of the square root of mass ratio and the magnitude of the ion conduction becomes the
same order as that of the convection. It is therefore reasonable that we assume the convective form of the ion
heat loss as
mLT i
¼ kLT i

Cs

L
gðrÞ;
and we usually choose kLT i
¼ 1.

Using the above-defined loss rates, the loss terms in Eqs. (22), (23), (4)–(6) can be expressed as
SL
e ¼ �mLðne � nedivÞ;

F L
sh ¼ �2mLnsush;

F L
s/ ¼ �2mLnsus/;

P L
s ¼ T s

SL
e

Zs
� 3

2
mLT s nsðT s � T sdivÞ
where we have introduced the electron density and electron and ion temperatures in the divertor region, nediv

and T sdiv, respectively, to sustain a dilute plasma in the SOL. The numerical factor of two appeared in the
momentum loss terms stems from the sum of the contributions from the density and velocity losses. The heat
loss term is a sum of the convective loss and the conductive loss.

Losses of the momentum equations consist of not only the loss to the divertor in the SOL but also the fric-
tion forces due to collisions with neutrals. We can express this frictional loss term as
F N
sh ¼ �nsmsðn01 þ n02Þhr0viush;

F N
s/ ¼ �nsmsðn01 þ n02Þhr0vius/;

F N
bh ¼ �nbmbðn01 þ n02Þhr0viubh;

F N
b/ ¼ �nbmbðn01 þ n02Þhr0viub/;
where r0 ¼ 8:8� 10�21m2 is the characteristic atomic collision cross section [21].
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Furthermore, we assume that ions reaching the divertor along the field lines are reflected back as neutral
particles with recycling rate c0 and thus are led to use the following expression for the particle sources in
the diffusive transport equations for slow and fast neutrals
S01 ¼ �
1

Z i

n01hrionvine � n01hrCXvini þ
c0

Z i

mLðne � nedivÞ; ð29Þ

S02 ¼ �
1

Z i

n02hrionvine þ n01hrCXvini þ fCX

P b

Eb

: ð30Þ
The first terms in both formulae express the reduction of number of neutrals due to ionization, leading to the
increase in electron and ion densities. The second terms represent annihilation and generation of fast neutrals
due to charge exchange, and the last term of Eq. (30) denotes the neutral source from the NBI. In addition, we
include the effect of gas puff with the influx rate C0 of neutrals from the wall as a boundary condition of Eq.
(10).

2.2.3. Collisional relaxation

When there exists a difference in velocity between electrons and ions, a collisional drag force acts on both of
them in opposite directions each other
~F C
ei ¼ �~F C

ie:
This collisional drag force gives rise to the radial particle flux usr through Eqs. (4) and (5) and is responsible for
the classical collisional transport. In general, the collisional drag force can be written
~F C
ei ¼ �meimeneð~ue �~uiÞ:
However, this simple definition overestimates the true resistivity of a hydrogen plasma by a factor of two. This
overestimation lies in using a usual electron–ion collision frequency mei which was obtained by using a shifted
Maxwellian electron distribution function without taking account of electron–electron collisions [22]. The cor-
rect results are
mei? ¼ mei ¼
Z2

i nie4 ln Ke

6pð2pÞ1=2
�2

0m1=2
e T 3=2

e

:;

meik ¼ NðZeffÞmei;
where NðZeffÞ is the correction function of the collisional frequency with respect to the effective charge, which
takes account of the effect of electron–electron collisions, and is given in [9]
NðZeffÞ ¼ Zeff

1þ 1:198Zeff þ 0:222Z2
eff

1þ 2:966Zeff þ 0:753Z2
eff

;

e.g. Nð1Þ � 0:51 in a plasma for singly charged ions. By defining the collisional frequencies as
mei1 ¼
B2

h

B2
meik þ

B2
/

B2
mei?;

mei2 ¼
BhB/

B2
ðmeik � mei?Þ;

mei3 ¼
B2

/

B2
meik þ

B2
h

B2
mei?;
the collisional force can be written
F C
eih ¼ �F C

ieh ¼ �mei1nemeðueh � uihÞ � mei2nemeðue/ � ui/Þ;
F C

ei/ ¼ �F C
ie/ ¼ �mei2nemeðueh � uihÞ � mei3nemeðue/ � ui/Þ:
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The similar way applies to the electron collisional relaxation with beam ions, giving
F C
ebh ¼ �F C

beh ¼ �mbe1nbmbðueh � ubhÞ � mbe2nbmbðue/ � ub/Þ;
F C

eb/ ¼ �F C
be/ ¼ �mbe2nbmbðueh � ubhÞ � mbe3nbmbðue/ � ub/Þ:
Here mbe is given by [8]
mbe ¼
neZ2

be4 ln Ke

3pð2pÞ1=2
�2

0mbme

me

T e

� �3=2

; ð31Þ
where Zb is the charge of beam ions, and mbe1, mbe2 and mbe3 are defined in the same manner as mei.
The ion collisional drag force with beam ions is simply given by
F C
ibh ¼ �F C

bih ¼ �mbinbmbðuih � ubhÞ;
F C

ib/ ¼ �F C
bi/ ¼ �mbinbmbðui/ � ub/Þ:
By estimating the slowing-down time of beam ions in the light of kinetic approach, we obtain [22,23]
mbi ¼
niZ2

i Z2
be4 ln Ki

2p�2
0mb

1

mb

þ 1

mi

� �
1

vbv2
thi

G
vb

vthi

� �
; ð32Þ
where vthi is the ion thermal velocity defined by ð2T i=miÞ1=2 and ln Ki the Coulomb logarithm of ion collisions
defined by [21]
ln Ki ¼ 40:3� ln
Z2

i

T i

ffiffiffiffiffiffiffiffiffiffiffi
2niZ2

i

T i

s0@ 1A;

where the units of ni and T i are the same as those of Eq. (28). G denotes the Chandrasekhar function [24] de-
fined by
GðxÞ � erfðxÞ � xerf 0ðxÞ
2x2

; ð33Þ
where erfðxÞ is the error function and now x ¼ vb=vthi. Expanding Eq. (33) into power series and expanding it
asymptotically provide us with the first term of Eq. (33) as
GðxÞ � 2x
3p1=2

ðjxj � 1Þ;

GðxÞ � 1

2x2
ðjxj � 1Þ:
This function implies that GðxÞ is inversely proportional to the ion thermal velocity if the beam velocity is suf-
ficiently slower than the ion thermal velocity (i.e. jxj � 1), while it is inversely proportional to the square
velocity of beam ions if it is sufficiently faster than the ion thermal velocity (i.e. jxj � 1). Putting these depen-
dencies together into the formula Eq. (32), we finally obtain
mbi ¼
niZ2

i Z2
be4 ln Ki

4p�2
0mb

1

mb

þ 1

mi

� �
1

v3
b þ 3p1=2

4
2T i

mi

� �3=2
:

In analogy with the difference of velocities, a difference of temperatures is forced to relax through collisions to
give rise to energy exchange. This energy exchange between electrons and ions is expressed as
P C
ei ¼ �P C

ie ¼ �
3

2
mTeineðT e � T iÞ;
where mTei is the electron temperature relaxation frequency with ions (or the equipartition rate) defined by [22]
mTei ¼
niZ2

i e4 ln Ke

3pð2pÞ1=2
�2

0memi

me

T e

� �3=2

:
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When a neutral beam is injected in a plasma, the beam particles initially having the injection velocity vb are
rapidly ionized and the resulting beam ions are slowed down by Coulomb collisions . Through the slowing-
down process, the beam ions give their energy to electrons and ions of the background plasma and the plasma
is then heated. There are two mechanisms to heat the background plasma [9]. One is the beam momentum
deposition heating which is proportional to the product of the injected beam momentum and the main ion
velocity. The other is the collisional heating through the thermal relaxation due to the Coulomb collisions.
The heating powers from NBI are therefore expressed by
P B
e ¼

1

2
mbv2

b

P b

Eb

½1� HðvcÞ	;

P B
i ¼ mb

Bhuih þ B/ui/

B
vb

P bk

Eb

þ 1

2
mbv2

b

P b

Eb

HðvcÞ;
where vc ¼ ð2Ec=mbÞ1=2 and [12]
HðvcÞ ¼
2

v2
c

Z vc

0

vdv
v3

c

v3 þ v3
c

;¼ 2

v2
c

1

6
ln

1� vc þ v2
c

1þ 2vc þ v2
c

þ 1

31=2

p
6
þ tan�1 2vc � 1

31=2

� �� �
:

2.2.4. Neoclassical viscosity

The neoclassical transport results from the Coulomb collision and the inhomogeneity of the toroidal mag-
netic field, so that in an axisymmetric system poloidal rotation of the plasma is damped by a parallel viscous
force [9].

In order to evaluate the neoclassical viscosity, we have incorporated the NCLASS module [25,26] into the
TASK/TX code. The NCLASS module provides the neoclassical quantities such as resistivity, bootstrap cur-
rent and viscosity on a magnetic surface, and is applicable to a multi-species axisymmetric plasma of arbitrary
aspect ratio. We therefore use the approximate form of the neoclassical viscous force:
F NC
sh � �nsmsmNCsush ¼ �

hB2il̂si
11

nsmsB2
h

nsmsush;
where mNCs denotes the neoclassical poloidal viscosity and l̂si
11 is the normalized viscosity coefficient which is

given by Eq. (15) in Ref. [25], and is in the output from the NCLASS module. Here, s appeared in l̂si
11 denotes

the particle species and i the charge state. Since we only consider the momentum flux in the present analyses,
we only use the viscosity l̂si

11 for the poloidal flow in the momentum viscous stress and we neglect the viscosities
associated with the heat flux.

In using the NCLASS module, we have adopted the simple formula of the trapped particle fraction ft [27]
ft ¼ 1:46�1=2 � 0:46�3=2: ð34Þ

The neoclassical transport effect induced by this viscous force will be discussed in Section 2.3. The fact that
F NC

sh acting on electrons and ions are not of the same magnitude implies that the neoclassical induced transport
seems non-ambipolar. On the longer time scale of the toroidal angular momentum damping time, however,
the toroidal angular momentum damps to a certain value, determining the asymptotic ambipolar transport
in terms of the pressure gradient [4].

2.2.5. Forces induced by turbulent fluctuations

We assume that turbulent fluctuations arising in a plasma are absorbed somewhere in a plasma and
momentum and energy are conserved. If the fluctuations do not propagate radially, the poloidal momentum
is transferred from electrons to ions or vice versa. By virtue of the poloidal momentum conservation, however,
the reaction force on electrons F W

eh should have the same magnitude of and the opposite direction to F W
ih on

ions. This implies that the transport induced by this force is the same for electrons and ions, that is, intrinsi-
cally ambipolar [28]. On the other hand, if the fluctuations do propagate radially, they may act as a perpen-
dicular viscosity. Since appropriate theory to describe the wave-particle interaction through fluctuations has
not been established, so that we introduce a model formula as is described in the following.
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We assume that anomalous particle transport results from the poloidal momentum exchange between elec-
trons and ions mediated by the turbulent electric field. The resulting force can be generally written as
~F W
s ¼ esh~n e~E þ n e~V � e~Bi:
In the case of the electrostatic fluctuation, the force acting on electrons can be expresses as [29,30]
F W
eh ¼ eB/neDe �

1

ne

dne

dr
þ e

T e

Er �
x
m

D E
e
r

eB/

T e

� le

De

� 1

2

� �
1

T e

dT e

dr

� �
; ð35Þ
where x and m are the mode frequency and poloidal mode number respectively, and hx=mier denotes the spec-
trum average of the phase velocity in the poloidal direction. In the above expression, we have assumed a sym-
metric wave spectrum with respect to kk and weak velocity shear. The factor De is proportional to the square of
the wave amplitude and corresponds to the ordinary diffusion coefficient. If the Lorentz force eneuerB/ bal-
ances with this force, the particle flux should include the term �Deðdne=drÞ and thus particles diffuse radially.
Although it is possible to consider a force related to the ion motion and Di, it is hard to describe the particle
diffusion through the model formula because the ion pressure gradient almost balances with the radial electric
field. We then concentrate on the form of Eq. (35) in the present analyses.

Since we can approximately express the terms in the angled bracket in Eq. (35) using ue?, we adopt model
formulae
F W
eh ¼ �F W

ih ¼ �
e2B2

/De

T e

ne ueh �
Bh

B/
ue/ �

x
m

D E
e
r

� �
; ð36Þ

F W
e/ ¼ �F W

i/ ¼
e2B2

/De

T e

Bh

B/
ne ueh �

Bh

B/
ue/ �

x
m

D E
i
r

� �
; ð37Þ
where the first two terms in parentheses comprise the perpendicular velocity of electrons. We take not only F W
eh

but also F W
e/ into account. By adding F W

e/ in the toroidal momentum equation, we can express the fluctuation
induced force as a perpendicular force. Since it is assumed that parallel force vanishes, no current is driven in
the parallel direction. In the present analyses, we assume that the spectrum averaged phase velocity vanishes,
i.e., hx=mie;ir ¼ 0.

The perpendicular viscosity ls is governed by the turbulence because the collisional part of the perpendic-
ular viscosity is very small. The turbulent viscosity results from the radial propagation of the fluctuation. Since
the viscous force on electrons and ions are not always of the same magnitude, the transport due to the viscosity
is therefore non-ambipolar; the particle flux is proportional to o3p=or3. We usually assume that ls has the same
radial profile as that of thermal diffusivity vs.

2.2.6. Transport of neutrals

Since there exist a number of groups of neutrals having different energies in a plasma, the Monte Carlo
method is often used to describe the transport of neutrals. We now employ, however, the simple diffusion
equations Eq. (10) for two groups of neutrals to describe the behavior of neutrals semi-quantitatively. One
group includes slow neutrals generated by gas puff or recycling with wall temperature, while fast neutrals
are generated by charge exchange and NB injection with ion temperature.

We opt for the following formulae for the diffusion coefficients of neutrals
D01 ¼
v2

0

m11 þ m12 þ m1i

;

D02 ¼
v2

thi

m21 þ m22 þ m2i

;

where the subscript 1 denotes the slow (thermal) neutrals and 2 the fast neutrals, m11 ¼ n01hr00v0i is the colli-
sion frequency between slow neutrals, m1i ¼ m2i ¼ nihr0ivthii between neutrals and ions, m21 ¼ n01hr00vthii be-
tween slow neutrals and fast neutrals and m12 ¼ m22 ¼ n02hr00vthii between fast neutrals. We choose a typical
velocity of slow neutrals v0 
 1:5� 103 m=s and a typical collisional cross section r00 
 r0i 
 8:8� 10�21 m2

[21].
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2.2.7. Radiation loss

A plasma emits electromagnetic radiation when the charged particles are microscopically accelerated.
Owing to their lighter mass, the electrons experience larger acceleration than the ions. Consequently they radi-
ate much more strongly, so that all we have to consider is the radiation of the electrons.

The electrons are accelerated through collisional processes and thus emit the radiation called bremsstrah-
lung. They are also subject to the acceleration of their cyclotron motion and the resulting radiation is called
cyclotron or synchrotron radiation. The power loss due to the cyclotron radiation is, however, usually much
smaller than bremsstrahlung in a D–T fusion plasma [10]. According to Ref. [10], the power due to brems-
strahlung is written as
P R
i ¼ g

e6

6ð3=2Þ1=2p3=2�3
0c3hm3=2

e

Z2
i neniT 1=2

e ;
where g is the Gaunt factor and g ’ 2ð3Þ1=2
=p is given in our case and h is the Planck’s constant.

In the presence of impurities, we should consider further losses due to the atomic processes of line radiation
and recombination radiation, but now the impurity effect is outside of our scope of the present analysis and we
therefore ignore it.

2.3. Stationary flux

Before completing the description of our physical model, we discuss the physical mechanism described in
our model by considering a stationary flux solution for electrons by setting the inertial terms in Eqs. (3)–(5) to
zero. Neglecting the perpendicular viscosity ls and relatively smaller centrifugal force, after a lengthy algebraic
calculation we obtain the radial and toroidal velocities for electrons as follows:
uer ¼ �
1

ð1þ aÞ�m3

�m3ð�m1 þ mNCeÞ � �m2
2

nemeX
2
e/

op
or
þ 1

ð1þ aÞ�m3Xe/

e
me

�m̂aE/ þ m̂bEh

	 

þ 1

ð1þ aÞ�m3

1

nemeXe/
m̂aF W

e/ þ m̂bF W
eh

� �
þ 1

ð1þ aÞ�m3Xe/
ðm̂ameb3 � m̂bmeb2Þub/ þ fðmei3 � �m3Þm̂a þ meb2m̂bgui/

� �
þ 1

ð1þ aÞ�m3Xe/
ðm̂ameb2 � m̂bmeb1Þubh þ f�meb2m̂a þ ð�m1 þ mNCe � mei1Þm̂bguih

� �
; ð38Þ

ue/ ¼
1

ð1þ aÞ�m3

m̂a

nemeXe/

op
or
� 1

ð1þ aÞ�m3

e
me

E/ þ
Bh

B/
Eh

� �
þ 1

ð1þ aÞ�m3

1

neme

F W
e/ �

Bh

B/
F W

eh

� �
þ 1

ð1þ aÞ�m3

meb3 þ meb2
Bh

B/

� �
ub/ þ mei3 þ mei2

Bh

B/
þ m̂a

Bh

B/

� �
ui/

� �
þ 1

ð1þ aÞ�m3

meb2 þ meb1

Bh

B/

� �
ubh � ð�m1 þ mNCe � mei1Þ

Bh

B/
� meb2


 �
uih

� �
ð39Þ
where
�m1 � mei1 þ meb1 þ mL þ m0e; �m2 � mei2 þ meb2; �m3 � mei3 þ meb3 þ mL þ m0e;

m̂a � �m2 þ ð�m1 þ mNCeÞ
Bh

B/
; m̂b � �m3 þ �m2

Bh

B/
;

a � �m1 þ mNCe

�m3

B2
h

B2
/

þ 2
�m2

�m3

Bh

B/
; Xe/ �

eB/

me

; and meb �
nbmb

neme

mbe:
Here, p ¼ pe þ pi denotes the total pressure. The neoclassical viscosity acts as the damping rate and a means its
contribution to the parallel direction. The poloidal velocity formula can also be derived in a similar manner.
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The first four terms on the right-hand side of Eq. (38) represent the neoclassical diffusion, Ware pinch, tur-
bulent diffusion and neoclassical pinch caused by the momentum input from NBI respectively. The last term is
a negligible contribution from the poloidal rotation of ions. In Eq. (39), the first three terms represent the
bootstrap current, neoclassical resistivity and turbulent-induced current, respectively. The last two terms
are also small contributions from the rotation of bulk ions. In order to evaluate the parallel resistivity, we
combine the second term of the right hand side of Eq. (39) with corresponding term in ion poloidal velocity
equation to obtain
gk ¼
með1þ aÞ�m3

nee2

B2
/

B2
; ð40Þ
and it is used for estimating ohmic current. In the limit of Bh ! 0, we recover the Spitzer resistivity,
NðZeffÞmemei=nee2.

We remark that the major neoclassical effects such as the spatial diffusion, Ware pinch, resistivity and boot-
strap current are all included in our model. We also note that the neoclassical effect on the turbulent transport
is included as well.

Since the neoclassical viscosity strongly suppresses the poloidal rotation of ions, uih is small in the core
region. When NBI is turned on, electrons are subject to a collisional drag force from beam ions and the radial
particle flux begins to be generated. This beam-induced flux, the fifth term in Eq. (38), is directed outward in
co-injection case and inward in counter-injection case. A reduction of the particle flux due to the toroidal rota-
tion of ions is usually small, because the bulk ion velocity is much smaller than the beam ion velocity. This
toroidal rotation in turn contributes to the modification of the radial electric field. According to the radial
force balance equation of ions Eq. (3) in a steady state, we obtain
Er ¼ �uihB/ þ ui/Bh þ
1

Z ieni

opi

or
;

and this relation points out that Er is expected to increase for co-NBI and to decrease for counter-NBI.

2.4. Boundary conditions

When we solve the set of 20 equations, Eqs. (2)–(10) and (16)–(20), appropriate boundary conditions should
be imposed on them. Since the set of equations consists of 11 second-order differential equations and four first-
order differential equations, we need a total of 26 boundary conditions to solve them. They are determined in
the following.

On the magnetic axis, r ¼ 0, we set half the number of boundary conditions as
oU
or
¼ 0; r _Ah ¼ 0;

o _A/

or
¼ 0; rnsusr ¼ 0; rnsush ¼ 0;

onsus/

or
¼ 0;

onsT s

or
¼ 0 and

on0s

or
¼ 0;
while on the wall surface, r ¼ b, other half as
U ¼ 0;
or _Ah

or
¼ rB/V ;

oA/

or
¼ �Bhb; rnsusr ¼ 0; rnsush ¼ 0;

nsus/ ¼ 0;
onsT s

or
¼ 0;

on01

or
¼ C0

D01

; and n02 ¼ 0;
where B/V is the vacuum toroidal magnetic field, Bhb the poloidal magnetic field on the wall surface defined by
the plasma current as Bhb ¼ l0Ip=2pb, D01 the particle diffusivity for neutral density n01, C0 the particle influx
from the wall, which is typically determined by gas-puffing. Since U is the electrostatic potential and reference
potential has an arbitrariness, we set it on the wall to zero. We assume that the adhesion condition always
holds in the very vicinity of the wall, setting the toroidal and poloidal rotations to zero.
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2.5. Initial conditions

Initial conditions more or less govern a simulation result in this sort of self-consistent nonlinear simula-
tions. What is needed for initial conditions is that the number of externally-given initial conditions should
be reduced as few as possible and the other conditions are consistently constructed from the given conditions.
Another important point is that all the dependent variables and their derivatives satisfy the continuity condi-
tion everywhere in the calculation domain. In general, variables in the core behave differently from those in the
SOL. At the plasma surface, however, they must be continuously connected between two regions because the
Galerkin method requires continuity of dependent variables, and in addition continuity of their derivatives
should be satisfied in the light of numerical stability. We therefore set the initial conditions for seven variables
to satisfy the above conditions as
nsðrÞ ¼
ðns0 � nsaÞ 1� ðr=aÞ3

h i
þ nsa ð0 6 r 6 aÞ;

nsa þ
P4
i¼1

aniðr � aÞi ða 6 r 6 bÞ;

8>><>>:
psðrÞ ¼

nsðrÞ ðT s0 � T saÞ 1� ðr=aÞ2
n o2

þ T sa

� �
ð0 6 r 6 aÞ;

psa þ
P4
i¼1

apiðr � aÞi ða 6 r 6 bÞ;

8>>><>>>:
n01ðrÞ ¼ n01init;

B/ðrÞ ¼ B/V ;

BhðrÞ ¼
l0Ip

2pr 1� f1� ðr=aÞ2g3
h i

ð0 6 r 6 aÞ;
l0Ip

2pr ða 6 r 6 bÞ;

8<:

where ns0 is the density on the magnetic axis, nsa the density at the plasma surface, nsb the density on the wall,
the same goes for the temperature T s and n01init the initial constant density of slow neutrals. Here, the coeffi-
cients ani and api for the density and the pressure profiles are determined by the conditions: nsðaÞ ¼ nsa,
n00s ðaÞ ¼ 0, nsðbÞ ¼ nsb, n0sðbÞ ¼ 0, psðaÞ ¼ psa, p00s ðaÞ ¼ 0, psðbÞ ¼ psb, and p0sðbÞ ¼ 0.

Using these defined variables, we build up remaining variables. First, we can readily calculate the electron
toroidal velocity and toroidal electromagnetic potential by analytically integrating and differentiating the
poloidal magnetic field, respectively, to obtain
neue/ðrÞ ¼
� 1

el0r
o
or ðrBhÞ ¼ � 3Ip

pa2 1� ðr=aÞ2
h i2

ð0 6 r 6 aÞ;
0 ða 6 r 6 bÞ;

8<: ð41Þ

A/ðrÞ ¼
�
R r

0
Bh dr ¼ � l0Ipr2

24pa6 ð2r4 � 9a2r2 þ 18a4Þ ð0 6 r 6 aÞ;
�
R a

0
Bh dr �

R r
a Bh dr ¼ � 11l0Ip

24p �
l0Ip

2p ðln r � ln aÞ ða 6 r 6 bÞ:

(
ð42Þ
The relation of Eq. (41) can be derived from Eq. (13) by neglecting the displacement current (time-derivative
term) and the ion current, and Eq. (42) comes from Eq. (21).

Next we focus on the major force balance relations of both radial and poloidal velocities, Eqs. (3) and (4) in
a steady state. In the toroidal component of the equation of motion for electrons, toroidal electron velocity is
balanced among the toroidal electric field and~v�~B force,
� e
me

neE/ �
e

me

Bhneuer � mei3neue/ ¼ 0: ð43Þ
Neoclassical force is usually as strong as the~v�~B force in the poloidal equation of motion for both electrons
and ions,
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e
me

B/neuer � mNCeneueh ¼ 0; ð44Þ

�Z i

e
mi

B/niuir � mNCiniuih ¼ 0: ð45Þ
The radial electric field is mainly governed by the ion pressure gradient, but the ion poloidal velocity is not too
small to be negligible. On the other hand, the radial force balance among the pressure gradient, the radial elec-
tric field and the~v�~B force
� 1

me

oðneT eÞ
or

� e
me

neEr �
e

me

B/neueh þ
e

me

Bhneue/ ¼ 0; ð46Þ

� 1

mi

oðniT iÞ
or

þ Z i

e
mi

niEr þ Z i

e
mi

B/niuih ¼ 0; ð47Þ
determines the poloidal velocity for electrons and ions. By solving Eqs. (43)–(47) simultaneously and assuming
the condition neuer ¼ niuir, we can obtain the initial profiles of Er, E/, nsusr and nsush. The first two quantities,
Er and E/, give U and _Ah, respectively.

Finally, we numerically integrate Eqs. (12) and (21) in a steady state to obtain
UðrÞ ¼ �
Z r

0

Er dr;

rAhðrÞ ¼
Z r

0

rB/ dr ¼ �l0

Z r

0

r
Z r

0

X
s¼e;i

esnsushdr

 !
dr:
It is reasonable to set the remainder of the variables to zero in an initial state because Eh (¼ � _A/), niui/, n02

and beam components are very small compared with the other variables.

3. Numerical methods

3.1. Transformation of the coordinate system

As discussed in Section 2.4, for some variables natural boundary conditions should be imposed on the mag-
netic axis. Natural boundary conditions can be usually applied by integrating a diffusive term by parts. In the
cylindrical coordinates, however, the boundary terms resulting from integration by parts consist of the prod-
uct with the radial coordinate variable r, so that we have difficulty in imposing the natural boundary condition
of the variable on the axis because its gradient cannot be determined uniquely at r ¼ 0.

As an example, we consider a simple diffusion equation in a cylindrical system
0 ¼ 1

r
o

or
rD

of
or

� �
þ S; ð48Þ
where f is the dependent variable, D the diffusivity and S the source term. In deriving the weak form of Eq.
(48), we multiply it with a weight function wðrÞ and integrate over the volume of the cylinder with unit axial
length
0 ¼ 2p
Z a

0

o

or
rD

of
or

� �
þ rS

� �
wdr:
Then we carry out integration by parts to obtain
0 ¼ 2p rD
of
or

w
� �a

0

� 2p
Z a

0

rD
of
or

ow
or

dr þ 2p
Z a

0

rSw dr:
Even if we want to impose the natural boundary condition of of =or ¼ 0 at r ¼ 0, the gradient has an arbitrary
value because the boundary term is always nought on the axis due to r ¼ 0. This leads to a numerical insta-
bility near the axis and we cannot always obtain a correct result.
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To avoid the indefiniteness of the gradient on the axis, we introduce the new radial coordinate, s, defined by
s ¼ r2. With this coordinate, the natural boundary condition at r ¼ 0 can be automatically satisfied because
the r-derivative is a product of r and the s-derivative, i.e.
Table
The de

Maxw
Equati
Equati
Equati
of
or

����
r¼0

¼ 2r
of
os

����
r¼0

¼ 0: ð49Þ
We transform Eq. (48) to the one in s coordinate, then we obtain
0 ¼ 4
o

os
sD

of
os

� �
þ S:
Note that f, D and S are now the functions of s. Using a weak form of the set of equations and integrating by
parts allows us to obtain
0 ¼ 4p sD
of
os

w
� �a2

0

� 4p
Z a2

0

sD
of
os

ow
os

dsþ p
Z a2

0

Swds: ð50Þ
Note that w is also a function of s and the integral domain is changed to ð0; a2Þ.

3.2. Choice of dependent variables

Before solving the set of nonlinear equations numerically, it is very important to define a dependent vari-
able in each equation. In developing the TASK/TX code, we adopt the Galerkin method as a numerical tool to
solve a radial profile of a variable. As will be described in Section 3.4, a linear interpolation function is used as
the finite element approximation function. That is to say, dependent variables and coefficients are represented
as a linear function in an element. As described in the preceding section, independent variable of the radial
coordinate is not r but s. When we think of the boundary conditions discussed in Section 2.4, some variables
such as nsusr and nsush are set to zero on axis and these kinds of variables essentially behave like a linear func-
tion in r coordinate near the axis. When we interpolate them using a linear interpolation function in s coor-
dinate, they have the dependence on s1=2 and the accuracy of approximation is strongly deteriorated near the
axis because a square root function cannot be suitably expressed by not only the linear function but also the
higher-order Lagrange function. To avoid this problem, we multiply these variables by r and define the result-
ing variables as the dependent variables in our calculation. They are summarized in Table 1.

3.3. Discretization of the domain

Near the plasma surface, some physical quantities such as the radial electric field, the plasma densities and
the toroidal velocities may vary substantially. We are interested in phenomena which occur near the plasma
surface: the L–H transition and the formation of the edge transport barrier. To analyze the plasma behavior
near the plasma surface accurately, we need to accumulate the spatial mesh in the vicinity of the plasma
surface.

In our simulation, the radial mesh should satisfy the condition that one of the grid points should be on the
plasma surface. In order to generate a radial mesh suitable for our simulation, we construct it in the following
way. First, we consider a Lorentzian function in the following form:
f ðrÞ ¼ C0 1þ C1

1þ fðr � rsÞ=wg2

" #
; ð51Þ
1
pendent variables in the TASK/TX code

ell’s equations U, r _Ah, _A/, A/, rAh

ons for bulk species ns, rnsusr, rnsush, nsus/, nsT s

ons for beam ions nb, rnbubh, nbub/

ons for neutrals n01, n02
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where C0 is a normalization constant, C1 the amplitude of a peak, rs the center position of the peak and w the
width of the peak. The Lorentzian function f ðrÞ has a peak at r ¼ rs and the magnitude of the peak can be
controlled by varying C1 and w. We then integrate f ðrÞ from 0 to r to obtain
Fig. 1.
r ¼ 0 d
F ðrÞ ¼
Z r

0

f ðr0Þdr0 ¼ C0 r þ C1 w arctan
r � rs

w

� �n o
þ w arctan

rs

w

� �h i
:

The resultant function F ðrÞ is close to a linear function except near r ¼ rs where the gradient of F ðrÞ becomes
large. When we give the equally spaced mesh of F, calculating the inverse function of r ¼ rðF Þ and mapping
from the original r coordinate to the generated coordinate allow us to obtain the appropriate r mesh which has
fine grids near r ¼ rs.

The way to construct the mesh so far, however, does not always satisfy the condition that the plasma sur-
face lies just on the grid point. We therefore take the following algorithm:

(1) As a trial, we generate a mesh in the above way using the given C1, rs and w.
(2) Unless the plasma surface is on the grid, we choose the radial grid position nearest to the plasma surface

and obtain the grid position in the original coordinate (i.e. the coordinate before mapping) correspond-
ing to the grid position in the generated coordinate.

(3) C1 is then calibrated to match the position in the generated mesh corresponding to the position obtained
above with the plasma surface exactly.

As an example, we show a radial mesh with the condition of N max ¼ 60, a ¼ 0:35, b ¼ 0:4, C1 ¼ 10, rs ¼ a
and w ¼ 0:05, where Nmax is the total number of mesh points. We also prepare the original radial coordinate
whose domain is ð0; bÞ and is equally separated into sixty elements. After the generation of the new coordinate,
it is found that r ’ 0:3514 is the nearest grid to the plasma surface of rs ¼ 0:35 and corresponds to
rorg ¼ 0:2867 in the original coordinate. The C1 value which makes the plasma surface set just on the grid after
mapping is provided as C1 ’ 8:016. Finally by using the new C1 instead of the old one, we obtain a new radial
mesh satisfying our requirement by regenerating it in the same way. In Fig. 1, we show the spatial mesh in r
and s ¼ r2 coordinates usually used in our simulation.

3.4. Algorithm for solving the nonlinear evolution equations

Using the generated radial mesh in the preceding section, we use the Galerkin method as the finite element
method to solve the set of equations, Eqs. (2)–(9) and (16)–(20) . The interpolation function we use is linear.
We adopt the decoupled formulation, which means that the interpolation function depends on the spatial
coordinate only and the nodal values, viz. variables, are functions of time t only.

Let us consider the time advancing scheme for a general time-dependent nonlinear equation
d~u
dt
¼ C
$
ð~uÞ �~uþ~Rð~uÞ;
r

s

r=0 r=a r=b

s=0 s=a2 s=b2

The generated r and s mesh points in the case of C1 ’ 8:016, rs ¼ a ¼ 0:35 and w ¼ 0:05. The total number of elements Nmax is 60.
enotes the magnetic axis, a the plasma surface radius and b the wall radius.



2826 M. Honda, A. Fukuyama / Journal of Computational Physics 227 (2008) 2808–2844
where ~u is a dependent variable of time t and space, C
$

is a coefficient matrix of ~u depending on ~u and ~R is a
source term. Applying the finite difference approximation to the time derivative reduces the equation to
~unþ1 �~un

Dt
¼ ð1� aÞ C

$
ð~unÞ �~un þ~Rð~unÞ

h i
þ a C

$
ð~unþ1Þ �~unþ1 þ~Rð~unþ1Þ

h i
; ð52Þ
where the subscript n denotes the nth number of time defined by t ¼ nDt with a time step Dt and a is an arbi-
trary number of 0 6 a 6 1. The full-implicit method of a ¼ 1 has the advantage of numerical robustness and
allows us to use larger time steps in comparison with the explicit method.

After a short algebraic calculation, we rewrite Eq. (52) in the following form
M
$
ð~unþ1Þ �~unþ1 ¼ ~F ð~unþ1Þ þ ~Gð~unÞ; ð53Þ
where
M
$
ð~unþ1Þ � I

$
�aDt C

$
ð~unþ1Þ;

~F ð~unþ1Þ � aDt~Rð~unþ1Þ;
~Gð~unÞ �~un þ ð1� aÞDt½C

$
ð~unÞ �~un þ~Rð~unÞ	:
Here I
$

denotes the identity matrix.
Since we cannot directly solve the nonlinear algebraic equations (53), we seek their approximate solutions

by Picard iteration, known also as a fixed point iteration,
M
$
ð~ulÞ �~ulþ1 ¼ ~F ð~ulÞ þ ~Gð~ulÞ; ð54Þ
where the superscript l denotes the lth iteration. At each time step, the coefficient matrix M
$

are evaluated using
the solution ~ul from the previous iteration. The solution at the ðlþ 1Þth iteration is obtained by solving Eq.
(54)
~ulþ1 ¼ M
$�1ð~ulÞ � ½~F ð~ulÞ þ ~Gð~ulÞ	: ð55Þ
At the beginning of the iteration, i.e. l ¼ 0, ~u0 is taken from the converged solution at the previous time, ~un.
The iteration is continued until the difference between ~ul and ~ulþ1 reduces to a prescribed convergence crite-
rion. In the present code the convergence criterion is given by
j~ulþ1 �~ulj
j~ulþ1j < �con; ð56Þ
where j j denotes the root-mean-square value of all initially-unknown nodal values and �con is typically chosen
as 10�5 in the following calculation. Fully converged ~ulþ1 satisfying the convergence criterion is set as a var-
iable at next time, ~unþ1.

While the full-implicit method guarantees numerical robustness, it requires an inversion of the assembled
matrix corresponding to M

$
�1 in Eq. (55). The assembled matrix is constructed by summing up the coefficient

matrices derived from element equations to make one global matrix. Since the global matrix is a band matrix,
we mainly use the DGBSV routine provided by the LAPACK package [31] with the ATLAS BLAS when
inverting coefficient matrix. This routine works faster and has less numerical error than other similar routines.

3.5. SUPG method

In order to eliminate spurious oscillations due to the spatial first derivative, we employ the Streamline
Upwind Petrov–Galerkin (SUPG) method. It has been originally developed as a way to suppress spurious
oscillations in advection dominated flows in the context of neutral fluid simulations [7], and is basically the
upwinding scheme in the finite element method. The advantage of the scheme is that we can obtain a highly
accurate solution without increasing the order of the interpolation function. Since we use the piecewise linear
interpolation function in our code, the method could work effectively.
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Rewriting the radial flow equation Eq. (3) in the s coordinate leads us to
Table
A set o

R ¼ 1:
ns0 ¼ 0
T s0 ¼
Zeff ¼
R is th
effectiv
o

ot
ðrnsusrÞ ¼ �2r

o

os
ðusrrnsusrÞ þ

ush

r
rnsush � 2

1

ms
s
onsT s

os
þ 2

es

ms
sns

oU
os

� �
� es

ms
B/rnsush � 2

es

ms
s
oA/

os
nsus/:

ð57Þ

This equation is composed of three terms including the first-order spatial derivative of dependent variables
and is similar to advection dominated kind of equation. If one attempt to solve this equation numerically
using the usual Galerkin method, one would obtain an oscillating solution, which is unphysical. To avoid this
situation, we introduce a modified weight function ~w for pure advection problems instead of the original one w

in the standard Galerkin method as
~w ¼ wþ p
ow
or
¼ wþ 2rp

ow
os
; ð58Þ
where p is the factor chosen appropriately. From the Fourier analysis performed by Raymond and Garder
[33], the optimal value of p is found to be
p � Dr

151=2
;

minimizing the phase error of the solution, where Dr is the element size and is generally dependent on radial
position. Through the new weight function including the derivative of the interpolation function, the weak
form of Eq. (57) becomes dissipative and the solution will be numerically stable; the derivative term in Eq.
(58) acts as the optimal numerical viscosity. The first-order derivative terms appearing in other equations
are all convection terms. Their magnitudes are usually much smaller than those of other terms and thus there
is no need to use the SUPG method for the equations except the radial flow equation.

4. Simulation results

4.1. Benchmark test

First of all, we have checked the validity of the newly developed code, TASK/TX, by comparing the sim-
ulation results with those of the conventional diffusive transport code, TASK/TR [3]. We set initial and
boundary conditions as similar as possible to each other, especially profiles of electron density, electron
and ion temperatures and safety factor. The TASK/TR code has already been benchmarked [3] with the TOP-
ICS code [34] and with a model profile dataset for benchmark tests provided by International Multi-Tokamak
Confinement Profile Database [35].

A set of parameters used in the benchmark test is shown in Table 2. These typical parameters have been
partly defined along those of actual medium size tokamaks, JFT-2M where the radial electric field was mea-
sured [36]. We assume a plasma composed of electron and hydrogen used in the JFT-2M experiments.

The ways to implement the particle diffusion coefficient and neoclassical transport effects are completely
different between the TASK/TX and the TASK/TR codes, so that in this test we assume the turbulent particle
transport coefficient and the neoclassical viscous force are set to zero, De ¼ 0; F NC

sh ¼ 0. The turbulent perpen-
dicular viscosities ls and thermal diffusivities vs have been chosen to have parabolic profiles in the radial direc-
2
f typical parameters used in the benchmark test

3 m, a ¼ 0:35 m, b ¼ 0:4 m, B/v ¼ 1:3T, Ip ¼ 0:2 MA,
:3� 1020 m�3, nsa ¼ 0:06� 1020 m�3, nsdiv ¼ 0:01� 1020 m�3,

0:5 keV, T sa ¼ 0:05 keV, T sdiv ¼ 0:01 keV,
1:0, Sgas ¼ 5:0� 1018m�2s�1, c ¼ 0:8

e major radius, a the minor radius, b the wall radius, B/v the toroidal magnetic field in vacuum, Ip the plasma current, Zeff the
e charge, Sgas the neutral influx due to gas puff, c the recycling rate from the wall and others are defined in Section 2.5.
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tion, as already mentioned in Section 2.2.5. The value on the edge is chosen to be 20 times as large as the cen-
tral one,
Fig. 2.
the TA
vsðrÞ ¼
1þ 19 r2

a2

� �
vs0 ð0 6 r 6 aÞ;

20vs0 ða 6 r 6 bÞ;

(

and we now choose vs0 ¼ 0:25 m2=s, resulting in vsðaÞ ¼ 5:0 m2=s. This profile is also adopted to ls.

One of the main differences between the codes is a boundary condition. The TASK/TX code calculates the
density and temperature at the plasma surface self-consistently, while the TASK/TR code requires boundary
conditions at the surface. Therefore the values at the plasma surface calculated by the TASK/TX code are
used in the TASK/TR code as the boundary conditions.

In Fig. 2, we show the results of the benchmark test between these codes at t ¼ 50 ms. In spite of the large
differences in the basic equations, the results are very similar to each other. We confirmed a good agreement
between the electron density profiles in Fig. 2a and the safety factor profile in Fig. 2b in the core region. The
difference of the density profile near the plasma edge is due to the ionization which is included only in the
TASK/TX code. We note that the slight differences were found in the temperature profiles in Fig. 2c and
d: the ion temperature from the TASK/TX code is slightly higher especially near the axis than that from
the TASK/TR code. The difference may be attributed to the ohmic heating with a slightly peaked current pro-
file in the TASK/TX code. In conclusion, the TASK/TX code solves the basic terms in the set of equations
with sufficient accuracy.

4.2. Typical profiles

Next we show typical ohmic plasma profiles calculated by the TASK/TX code. Basically the plasma param-
eters used in this and the following sections are the same as those used in the previous section except Zeff ¼ 2:0
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under the assumption of the existence of a small amount of impurity. Unlike the benchmark test case, the neo-
classical effects and the turbulent particle transport are taken into account. Since we are here concerned with a
generic behavior of the turbulent diffusion, we assume that turbulent particle transport coefficient De has a
constant value of 0:03 m2=s over the whole plasma.

In order to clarify a typical behavior of each variable, we show the results of ohmic-heating simulation in
Fig. 3, which presents the profiles of sixteen dependent variables described in Table 1, turbulent viscosity, ther-
mal diffusivity, safety factor and toroidal current density at t ¼ 50 ms. For these parameters, no edge transport
barriers are formed near the plasma surface in the density and temperature profiles, implying that the plasma
is in L-mode. The density profile is not in a steady state and the radial velocities are positive over the whole
region. The neoclassical inward particle pinch is overwhelmed by the turbulent diffusion of this level. Electron
temperature increases due to the ohmic heating power while ion temperature slightly decreases in spite of the
energy transfer from electrons. Because of the low poloidal beta of bp ¼ 0:32, we can see that the plasma is
slightly paramagnetic in the toroidal magnetic field profile: the magnitude at the magnetic axis is 1.5% larger
than that at the edge.

4.3. Convergence study

We now examine the numerical convergence under the same plasma condition in the previous section. First,
we consider the convergence with respect to the spatial resolution. We varied the number of the spatial mesh
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Fig. 3. Typical profiles in an ohmic heated plasma calculated by the TASK/TX code after 50 ms calculation from the initial state.
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points from 20 to 100 every 10 interval. The default convergence criterion of Picard iteration in our analyses is
10�5 as shown in Eq. (56), which seems to be enough tolerance for nonlinear transport simulations. We then
studied how the convergence changes when we vary the convergence criterion, �con in addition to the change of
spatial resolution. We define the arithmetic average number of iterations as the convergence index which is
defined by the sum of the number of iterations over all time steps divided by the total number of time steps,
500.

Fig. 4 shows the dependence of the average number of iterations on the number of radial mesh points in
four cases: �con ¼ 10�5, 10�4, 10�3 and 10�2. When we focus our attention on the average number of iterations
for each convergence criterion, we clearly see very weak dependence on the number of spatial mesh points; the
average number of iterations gradually grows as the number of mesh points increases. This implies that the
solutions of the TASK/TX code converge well almost independent of the number of spatial mesh points
for �con < 10�5.

Next we pick up the cases of N max ¼ 60 in Fig. 4 and study how the solutions converge when we reduce the
convergence criterion from �con ¼ 10�2 to �con ¼ 10�5. By using least-square method, we obtain a fitting func-
tion as N ave ¼ �1:616 log �con þ 1:557, where N ave denotes the average number of iterations, which indicates
very good exponential convergence.

We should note a larger average number of iterations, N ave, in the case of Nmax ¼ 100 and �con ¼ 10�5 in
Fig. 4. This increase in iterations is caused by small values of some variable, such as r _Ah, in Table 1. According
to Eq. (21), _Ah is related to Eh, which is much smaller than other electromagnetic variables in tokamak plas-
mas. This type of variables with small values is harder to be converged than other variables and thus generally
impedes the rate of convergence when �con is small.

We also study the dependence of the accuracy of the profile on the convergence criterion. To evaluate the
accuracy quantitatively, we introduce a standard deviation rn defined by
Fig. 4.
10�2.
rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r½fnðrÞ � f�5ðrÞ	2P

rf
2
�5ðrÞ

s
;

where fnðrÞ denotes the variable at a radial position r and n is the exponent of �con. We figure out the sum
P

r
over the whole region, r ¼ 0 
 b. By examining this standard deviation, we are able to evaluate the difference
between the profile for given �con and the corresponding profile at �con ¼ 10�5. We now choose Nmax ¼ 60 and
calculate the standard deviations at t ¼ 50 ms.

From Table 3, we confirm that profiles for any variables steadily converge with the profiles at �con ¼ 10�5

when we gradually reduce the convergence criterion from 10�2 to 10�5. We should note that the profiles at
�con ¼ 10�2 are sufficiently accurate with the standard deviations less than 10�6 for most variables.

We now focus our attention to r _Ah in Table 3. Its standard deviations are more than one order larger than
any other deviations for all �con’s and we see that r _Ah is a bottleneck in convergence. We also found from Table
3 that the more important potentials such as /, _A/ and rAh are sufficiently accurate even if we adopt loose
criterion.
 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 N
um

be
r 

of
 It

er
at

io
ns

Number of Mesh Points, Nmax

ε=10-5

ε=10-4

ε=10-3

ε=10-2

Dependence of arithmetic average of the number of iterations on the number of spatial mesh points in four cases from �con ¼ 10�5–



Table 3
Standard deviations of all the variables except for beam ion components

�err 10�4 10�3 10�2

/ 6.89 (�9) 5.77 (�8) 6.49 (�7)
r _Ah 2.15 (�7) 9.81 (�7) 1.46 (�5)
_A/ 4.55 (�9) 5.99 (�8) 4.10 (�7)
A/ 9.84 (�10) 1.62 (�8) 7.92 (�7)
rA/ 1.90 (�12) 3.25 (�11) 6.02 (�10)
ne 4.12 (�9) 2.85 (�8) 2.44 (�7)
rneuer 2.08 (�8) 1.06 (�7) 5.06 (�7)
rneueh 1.07 (�8) 3.18 (�8) 7.24 (�7)
neue/ 3.25 (�9) 1.98 (�8) 9.44 (�7)
neT e 3.03 (�9) 2.04 (�8) 2.61 (�7)
ni 4.12 (�9) 2.85 (�8) 2.44 (�7)
rniuir 2.08 (�8) 1.06 (�7) 5.06 (�7)
rniuih 7.55 (�8) 4.51 (�7) 7.89 (�7)
niui/ 3.23 (�9) 2.90 (�8) 9.84 (�7)
niT i 3.14 (�9) 3.57 (�8) 5.39 (�7)
n01 8.37 (�9) 5.10 (�8) 8.93 (�8)
n02 1.33 (�8) 1.22 (�7) 6.51 (�7)

Numbers in the parentheses denote the power of ten; for example, 6:89ð�9Þ means 6:89� 10�9.
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Finally it is worth noting how the number of iterations depends on the time step as well as the iteration
tolerance. Due to the electron parallel heat loss model in the SOL, mLT e , which is a strongly nonlinear function
of the electron temperature, the upper limit of the time step is inevitably imposed: Dt � 2:5� 10�4 s. If we use
a larger time step above this criterion, the profile of the electron temperature in the SOL would alternate
between the higher and the lower temperature states every time step. We then focus on the convergence depen-
dence in the range of 10�6

6 Dt 6 2:5� 10�4. N max ¼ 60 is chosen and we calculate the average number of iter-
ations after 10 ms calculation: 104 time steps are needed in the case of Dt ¼ 10�6 and 40 time steps in the case
of Dt ¼ 2:5� 10�4. From Fig. 5a, we find the tendency that regardless of the convergence criterion the average
number of iterations decreases as the time step size decreases. However we also find increases in the number of
iterations in the smaller time step size region.

From the analysis using the standard deviation shown in Table 3, we have already known that the conver-
gence speed of r _Ah is slower than other variables. The ion toroidal velocity in the ohmic heating phase is very
small compared with other flows. Furthermore, the convergence speed of r _A/ tends to be slower due to the
displacement current term. We therefore carry out the convergence test with relaxed convergence criteria
for r _Ah and niui/ by 102 and that for r _A/ by 10. As shown in Fig. 5b we can see mostly monotonic dependence
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case (a), the same convergence criterion is imposed on all the equations while, in the case (b), the loose convergence criterion is adopted
only in the equations of r _Ah, r _A/ and niui/.
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of the average number of iterations on the time step size: We should note that the solutions are not converged
when the time step size is smaller than Dt ¼ 10�5 for �con ¼ 10�5 and 10�4. The failure of convergence for
Dt K 10�5 may be attributed to the existence of compressional Alfvén wave with frequency range of

 100 kHz.

4.4. Neoclassical transport without turbulence

In order to clarify how the neoclassical transport works in the simulations by the TASK/TX code, it is use-
ful to consider a stationary profile without turbulent transport. In other words, De0 ¼ vs0 ¼ ls0 ¼ 0. Since the
TASK/TX code includes only the neoclassical particle flux, we now concentrate on a particle transport phe-
nomenon, keeping the temperature profiles fixed to the initial ones in this section. The set of plasma param-
eters and initial profiles is basically the same as that in the previous section except the plasma current and the
rate of gas puff: the former is reduced to Ip ¼ 0:12 MA and the latter is also reduced to
Sgas ¼ 1:0� 1018 m�2 s�1 for the purpose of accelerating the relaxation towards a steady state. The calculation
is stopped at t ¼ 500 ms where the plasma reaches a quasi-steady state.

In Fig. 6a, a peaked density profile is observed. This is caused by the Ware pinch due to the neoclassical
effect, which is described in the second term of Eq. (38). As can be seen in Fig. 6b, the inward radial flux is
very small but still exists in the core region. The inward flux in the outer region, 0:8 K r=a K 0:95, balances
with the ionization of neutrals in Fig. 6d. The outward flux in the edge region, 0:95 K r=a K 1:05, is due to
the ionization inside the plasma surface and the parallel loss outside it.

The radial electric field shows a large negative peak at the plasma edge region ðr � aÞ in Fig. 6b. This peak
partly stems from the difference between the neoclassical diffusivities of electrons and ions. Since the transport
in the SOL is dominated by the parallel transport, there exists an abrupt change of transport mechanism at the
plasma edge. The ions which have larger radial diffusivity due to the larger orbit size escape to the SOL slightly
quicker than the electrons. More electrons are therefore left on the inner side of the plasma edge, while ions
accumulate on the outer side, i.e. the SOL, where both electrons and ions are lost to the divertor with the same
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loss rate. The localized electric field also drives a poloidal rotation of electrons and ions and it affects the radial
flux and then the density profile.

4.5. Turbulent transport without neoclassical effect

In our model equations, we do not use the particle diffusion equations for electrons and ions; the density is
described by the continuity equation, Eq. (2) and we do not assume the particle diffusion explicitly in the equa-
tion. If turbulent fluctuations exist, a force induced by them damps the poloidal velocity and then affects the
radial velocity through the poloidal force balance in Eq. (4), and finally particles may diffuse owing to the
advective term. We should therefore confirm whether the particles actually diffuse by this mechanism. For this
purpose, we carried out a simulation without the neoclassical viscosity mNCs. The parameters and conditions
are the same as those in Section 4.2.

The simulation results of the electron density profile are shown in Fig. 7. Diffusion observed in Fig. 7a
clearly confirms that the model poloidal force induces particle diffusion. In addition, we carry out the simu-
lation without not only the neoclassical viscosity but also the turbulent particle diffusivity De. In this case, as
expected, the density profile hardly changes in the core plasma and no diffusion and pinch are observed in
Fig. 7b. In the vicinity of the plasma surface, ionization due to the neutral influx inside the plasma surface
and the parallel loss in the SOL modify the shape of the density profile.

4.6. Validity of the neoclassical model

As described in Section 2.2.4, we introduced only the neoclassical poloidal viscosity to describe all the neo-
classical effects in the TASK/TX code. We cannot therefore distinguish an individual neoclassical effect from a
simulation result; e.g. the toroidal current includes the bootstrap current, but we cannot directly calculate the
fraction of the bootstrap current in the total current.

When the plasma approaches to a steady state, we may use the analytic solutions Eqs. (38) and (39) in a
steady state given in Section 2.3 to estimate the value of the resistivity and bootstrap current. The resistivity
given in Eq. (40) and the bootstrap current obtained from the second term in the angled bracket in Eq. (39) are
written as:
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To assess the validity of our neoclassical model, we now compare the neoclassical resistivity and bootstrap
current calculated by Eqs. (59) and (60) with those calculated directly in the NCLASS module and the approx-
imate formula of Sauter model [37]. In this subsection, we ignore the potato orbit effect because the Sauter
model does not take account of it.

Before the comparison, we also note that only in this subsection we assume flat temperature profiles in the
core plasma in order to exclude the effect of a neoclassical heat flux driven by the temperature gradient. Given
the same set of parameters in Section 4.2 except the effective charge of Zeff ¼ 1:0 and the flat temperature pro-
files, the resistivity and bootstrap current has been calculated using the initial profiles. The result of compar-
ison is presented in Fig. 8. The Sauter model provides almost the same profiles as the NCLASS results. For
both the resistivity and the bootstrap current, the profiles of the steady-state estimates in the TASK/TX code
and the NCLASS results are similar in shape and the magnitude of them are comparable with each other. For
both resistivity and bootstrap current, the discrepancies between the TASK/TX and the NCLASS results are
less than 20%.

4.7. Parameter dependence

It is important to clarify the dominant parameter dependence of plasma behavior in the TASK/TX code. In
this section, we change several plasma parameters around the reference values used in Section 4.2 in order to
study a response of the plasma. All the results in this section are collected at t ¼ 50 ms same as the case of the
typical profile in Section 4.2.

4.7.1. Turbulent particle diffusivity

The turbulent particle diffusivity strongly affects the particle transport and thus the momentum transport.
With the change of De in the turbulent induced force terms, F W

sh and F W
s/, the density profile indirectly changes

through the change of the radial flux as we have seen in Section 4.5. The case of low diffusivity
ðDe ¼ 0:01 m2=sÞ is similar to that of no turbulent diffusivity case, viz. only the neoclassical effect. The particles
hardly diffuse because of the low diffusivity and due to the neoclassical viscosity the inward pinch dominates
the density profile in the core. It then peaks on the magnetic axis as shown in Fig. 9. The radial electric field
peaks at the plasma surface because the lower diffusivity allows the pressure profile to be steep. The electron
temperature becomes comparable to the ion temperature owing to the high density.

The inward pinch gradually decreases with the increase in De because the diffusion process overcomes the
pinch. In the case of De ¼ 0:03 m2=s, the inward pinch almost vanishes and the positive radial flux prevails
over the whole plasma, resulting in the flat profile of the density near the axis. With the further increase in
De, the density near the axis drops in a transient phase.
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4.7.2. Plasma current

The total plasma current affects not only the poloidal magnetic field, but also all the plasma variables
through the Ware pinch and Joule heating.

In Fig. 10, we show the cases of Ip ¼ 0:15 MA, 0:2 MA and 0:25 MA. Increase in Ip directly ramps up j/

and then E/, leading to enhancement of ohmic heating power. Ohmic heating power increases T e and then T i

through the energy exchange. Increase in the ion temperature causes the ion pressure to increase, then leading
to increase in the magnitude of Er because the radial electric field is mostly governed by the ion pressure gra-
dient unless strong rotations exist. Increase in E/ also induces enhancement of the Ware pinch. This inward
pinch makes more particles move inward and then the density slightly peaks near the axis.

4.7.3. Gas puff and recycling rate

Neutral influxes by a gas puff and recycling directly affect the thermal neutral density and they may affect the
density profile of the core plasma. With the increase of the neutral density in the SOL, the plasma density may
increase due to the ionization. In order to study the influence of the neutral influx from the wall, we vary the influx
by the gas puff Sgas ¼ 1:0� 1018, 5:0� 1018 and 1:0� 1019 m�2 s�1 and the recycling rate c ¼ 0:5, 0:8 and 0:9.

The change of these factors leads to little change of density profile. The densities of the thermal and fast
neutrals increase in proportion to the neutral influx. Owing to the increase of neutral densities, the ionization
process makes more charged particles in the SOL and then the plasma density rises. According to the increase
of the plasma density, the magnitude of the radial electric field in the region of r=a > 0:6 slightly decreases.
The change of the neutral densities in the SOL, however, hardly affects the variables in the core region and
the effect on those in the SOL is limited although it depends on the velocity of the neutrals bounced back from
the wall. The change of the neutral influx from the wall does not affect the core plasma so much for the present
plasma parameters.

4.7.4. NB injection

Next we describe the behavior of the plasma under the NBI heating with co and counter injections relative
to the plasma current.
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In the simulation with NBI, we assume the following shape of beam deposition profile:
P bðrÞ ¼ P b0 exp � r2

r2
NB

� �
½1� ðr=aÞ4	
where P b0 is the normalization factor determined by the way that the integral of P bðrÞ in a plasma is equal to
the total heating power. On-axis power deposition profile is assumed. rNB denotes the heating width of NBI
and typically rNB ¼ 0:15 m. The beam energy Eb ¼ 32 keV and the heating power 0:5 MW are chosen accord-
ing to the NBI experiment on JFT-2M [36]. We have assumed De ¼ 0:01 m2=s, vsð0Þ ¼ 0:5 m2=s and
lsð0Þ ¼ 1 m2=s. The dependence on De will be discussed later. The values of ls and vs were adjusted to roughly
reproduce the experimental peak values of toroidal rotation velocity and temperatures on JFT-2M. We now
study three cases in this subsection: (i) ohmic heating case at t ¼ 20 ms just before the NBI starts, (ii) co NBI
case at t ¼ 100 ms, (iii) counter NBI case at t ¼ 100 ms. The results are presented in Fig. 11.

The input of the toroidal momentum from NBI strongly rotates the beam ions in the toroidal direction
(Fig. 11l). The bulk ions rotate toroidally in the same direction due to the collisional momentum transfer from
the beam ions (Fig. 11i). The electrons follow the bulk ions with a slightly slower toroidal velocity due to the
collisional drag with Zeff > 1 (Fig. 11f). Before the NBI starts, the radial electric field Er is mostly determined
by the ion pressure gradient. After the NBI starts, however, the fast ion toroidal velocity dominantly governs
the behavior of Er through Eq. (3). We observe positive Er in the co-injection case and strongly negative Er in
the counter-injection case (Fig. 11d).

We observe density profile modification due to the NBI (Fig. 11a). There are two mechanisms inducing
radial particle flux. One is the neoclassical flux driven by the beam ions, the fourth term in Eq. (38). This flux
is outward for co-injection and inward for counter-injection. The other is the turbulence-induced flux, the
third term in Eq. (38), which is mainly driven by the friction force, Eq. (36). Since the beam ions drag the elec-
trons and the electrons tend to move along the field line (ueh > 0 for ui/ > 0), F W

eh is negative in the co-injection
case and positive in the counter-injection case. Therefore the turbulence-induced flux is inward for co-injection
and outward for counter-injection.
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Since the neoclassical and the turbulence-induced fluxes are in opposite directions, the total particle flux
depends on the magnitude of De; in the case of co-injection, the flux is outward for small De and inward
for large De. For the present value of De ¼ 0:01 m2=s, the neoclassical flux is still dominant. In the case of
co-injection, therefore, the outward flow allows the density profile to flatten near the magnetic axis, while
the density profile is peaked in the case of counter-injection (Fig. 11a).

Next we look at the change of the electron temperature. In the case of co-injection, the direction of the
beam driven current is the same as that of the plasma current. Since the total current is fixed in the present
calculations, the ohmic current is largely replaced by the beam-driven current and the Joule heating decreases.
In the case of counter-injection, the counter current drive increases the ohmic current and enhances the Joule
heating, leading to higher T e compared with the case of co-injection. In this JFT-2M like plasma, the initial
beam energy Eb is much greater than the critical energy Ec over the whole plasma except near the magnetic
axis, hence the beam mainly heats the electrons rather than the ions. Thus the electron temperature increases
shortly after the start of the NBI. The electron temperature, however, equilibrates to the ion temperature
owing to the energy equipartition as the plasma approaches to a steady state. In the co injection case, since
the ions are heated due to the momentum deposition heating in addition to the collisional heating, the ion
temperature is larger than the electron one unlike the counter injection case.
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Finally, we study how well the present TASK/TX code is able to reproduce the experimental profile
observed on JFT-2M. Although given parameters and initial conditions are almost the same as the previous
simulation, in this case we have assumed De ¼ 0:025 m2=s, lsð0Þ ¼ 1:3 m2=s, við0Þ ¼ 2veð0Þ ¼ 0:9 m2=s and
Sgas ¼ 3:0� 1020 m�2s�1. The initial electron density and temperatures on the magnetic axis,
neð0Þ ¼ 0:24� 1020 m�3, T eð0Þ ¼ 0:7 keV and T ið0Þ ¼ 0:4 keV, are taken from Fig. 1c at t ¼ 550 ms in Ref.
[36], when the co NBI was activated. We concentrate on the case with co NBI phase corresponding to
t ¼ 550–750 ms in the experiment. According to the experiment, the code runs with the co NBI of
P NB ¼ 0:5 MW for 200 ms. We compared the profiles of the radial electric field and the ion toroidal velocity
with those observed in the experiment in Fig. 12a and b at t ¼ 690 ms in the experiment corresponding to
t ¼ 140 ms in the simulation. Although the results do not perfectly agree with the experiment, the magnitude
and the shape of the profiles in the core region are similar, although the behavior of ui/ in r=a > 0:6 is differ-
ent. Time evolutions of the electron and ion temperatures on the magnetic axis and the ion toroidal velocity at
r=a ¼ 0:15 are compared with the experiment in Fig. 12c and d. The temperatures in the simulation grow more
rapidly than those of the experiment, but T e;simð0Þ finally reaches the experimentally observed electron temper-
ature. This rapid increase in the initial phase can also be seen in the ui/ðr=a ¼ 0:15Þ evolution.

4.7.5. Ion orbit loss effect

The TASK/TX code does not assume the quasi-neutrality, which distinguishes itself from other conven-
tional transport codes. We will, therefore, show one example of the capability of the TASK/TX code which
can deal with a problem of breaking the quasi-neutrality.

In the edge region, ion orbits with large radial excursions are apt to intersect the wall boundary and are lost
from the confinement region. Sudden lack of ions may produce the inward radial electric field, which pulls ions
back in the confinement region and pushes electrons outside the plasma. It is believed that a sudden increase of
the ion orbit loss is a candidate for the trigger for the L–H transition [38]. Therefore, it is important to know
how the radial electric field develops with the ion orbit loss and how it affects the plasma state.
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Conventional transport codes generally solve one continuity equation for either electrons or ions since they
explicitly assume the quasi-neutrality condition. These codes cannot self-consistently deal with the problem
that the ion particle flux Ci exceeds the electron one Ce. In the TASK/TX code, however, simple addition
of the ion orbit loss term to the continuity equation and corresponding momentum equations causes various
effects induced by the ion orbit loss self-consistently.

For ions, we introduce the ion orbit loss terms
Fig. 13
(a) the
poloid
SiL
i ¼ �miLni

F iL
ih ¼ �miLniuih

F iL
i/ ¼ �miLniui/
to Eqs. (2), (4) and (5), respectively. Here miL is the ion orbit loss rate defined by [39]
miL ¼
2:25
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24 35;
where mt is the deflection collision frequency evaluated at v ¼ vthi, � is the inverse aspect ratio,
m� ¼ mtRq=½vthiðjSj�Þ3=2	, Xi ¼ Z ieB=mi, I ¼ RB/, and w is the poloidal flux and the subscript s denotes the plas-
ma surface. Here S is the orbit squeezing factor given by S ¼ 1� ðqpid ln Er=drÞðEr=BhvthiÞ [40], where qpi de-
notes the ion poloidal gyroradius. In this model the ion orbit loss rate depends on the shear of the radial
electric field through the orbit squeezing term.

For this ion orbit loss simulation, we have modified the boundary conditions. In a transient phase, it is
anticipated that the radial current flows due to Ci > Ce, so that the boundary condition of usr ¼ 0 at r ¼ b
is no longer appropriate. Therefore we set the density gradient to zero at the boundary instead of usr ¼ 0.
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Fig. 14. Time evolution of the ion toroidal velocity ui/ at r=a ¼ 0:15.
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Under the same condition as the ohmic phase of the NB injection case in previous section, the simulation
was carried out for 100 ms. We then compare the cases with and without the ion orbit loss in Fig. 13. A sudden
loss of ions around the plasma surface breaks the quasi-neutrality and in order to compensate the difference of
the density the strong inward radial electric field is produced there (Fig. 13a), leading to the outward electron
flux and inward ion flux (Fig. 13b and c). The ion density drops near the plasma surface due to the loss channel
of the ions and the electron density follows it (Fig. 13d and e). With the change of the densities, the pedestal of
the temperatures for both electrons and ions develops (Fig. 13g and h). This implies that the pedestal of the
pressure hardly changes. The poloidal velocity is damped by the neoclassical viscosity in the core confinement
region, but it greatly rotates near the plasma surface owing to the torque induced by the ion orbit loss
(Fig. 13f). The situation is the same for the ion toroidal velocity (Fig. 13i). The ion orbit loss induces the
inward radial current in the proximity of the peripheral, which produces the torque in the presence of the mag-
netic field. The torque makes the plasma rotate near the plasma surface, and then the perpendicular viscosity
diffuses the produced momentum towards both sides. There is no significant damping mechanism in the toroi-
dal direction in comparison with the poloidal direction, hence after a short time, the toroidal rotation profile
becomes uniform in the core region.

Since there is no net current across the flux surface in a steady state, no net torque is applied on the plasma
[39]. In other words, the rotation is gradually been damped in a transient phase, and finally the rotation will
stop. The time evolution of the ion toroidal velocity at r=a ¼ 0:15 shown in Fig. 14 confirms the damping of
the rotation in the simulation. We found that the relaxation time of the toroidal velocity is relatively long and
finite. The toroidal velocity remains even if we proceed the simulation further. This implies that the ion orbit
loss may be a candidate for the origin of the spontaneous (intrinsic) rotation.

5. Conclusion and discussion

A new one-dimensional transport code, TASK/TX, has been developed to describe time evolution of a
plasma in a circular cylindrical geometry. We have assumed that the transport along the magnetic field line
is much faster than the phenomena of our interest in order to employ the magnetic surface average. This code
calculates not only the particle density and temperature but also the radial particle flux and poloidal and toroi-
dal rotations self-consistently, by solving a set of flux-surface averaged two-fluid equations coupled with Max-
well’s equations, neutral diffusion equations and beam slowing-down equations. These dynamic transport
equations also describe the time evolution of the radial electric field, which is believed to play an important
role for improved confinement. Unlike the conventional one-dimensional transport code based on the flux-
gradient relation, the code also describes the transient phenomena on a rapid time scale because equations
of motion are solved. These equations are calculated over the whole plasma including the SOL, so that it is
not necessary to impose explicit boundary conditions on the plasma surface; alternatively the values at the
plasma surface are determined by the balance between the core and SOL transport. In this model, explicit
particle diffusivity does not appear in the continuity equations (particle transport equation). The particle dif-
fusion is expressed in the convective flux due to the perpendicular friction force in the poloidal and toroidal
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equations. It was confirmed through the steady state analysis that the model equations including the neoclas-
sical viscosity express the important neoclassical effects, such as the Ware pinch, the resistivity and the boot-
strap current.

In order to solve the set of the dynamic transport equations, the finite element method is adopted because
mesh accumulation near the plasma surface is crucial to describe the abrupt change of plasma quantities due
to the difference of transport mechanisms. For robust calculation, several numerical stabilization schemes
have been introduced. First, by transforming the spatial coordinate of the equations from r to sð¼ r2Þ, the nat-
ural boundary conditions at the magnetic axis of o=orjr¼0 ¼ 0 are automatically satisfied. Secondly, the depen-
dent variables are carefully chosen to be suitable for the linear interpolation function. Finally the Streamline
Upwind Petrov–Galerkin (SUPG) method has been introduced in the radial component of the equations of
motion including the advective terms and no diffusion terms. All these three schemes contribute to the numer-
ical robustness, and we would not succeed in the calculation if any of these were lacked. For time advancing,
the full implicit method is adopted. It requires much time to solve the band matrix equation, but numerical
stability, which is quite important for nonlinear simulation, is obtained.

Several numerical results was presented to show the capability of the TASK/TX code and to confirm its
validity. The benchmark test between the TASK/TX and the TASK/TR codes, the latter of which is a
one-dimensional diffusive transport code, was carried out and a fairly good agreement was obtained. Several
convergence studies indicated good convergence up to �con ¼ 10�5. We compared the neoclassical effects, the
resistivity and the bootstrap current, obtained from the steady state analysis using the neoclassical viscosity
with those directly obtained from the NCLASS module and the Sauter model. It was found that our neoclas-
sical model can describe the neoclassical effects to a reasonable extent. We also examined whether the turbu-
lent particle diffusion model works properly through the turbulence-induced friction force and confirmed its
validity. The plasma responses against the change of three parameters were studied: the turbulent particle
diffusivity, the plasma current, and neutral influx. One of the important features of the TASK/TX code is
to be able to describe the density profile modification dependent on the direction of the neutral beam injection,
either co or counter. We examined the density and the radial electric field profiles in both co and counter cases
and confirmed qualitative agreement with experimental observations on JFT-2M although turbulent transport
coefficients were adjusted to reproduce the experimental values. Lastly we showed the simulation result of the
radial electric field formation and the torque generation due to the ion orbit loss effect. This simulation reveals
the applicability of the TASK/TX code to various problems related to radial current which cannot be treated
by conventional transport codes so far.

Some subjects to be done still remain for both physical and numerical points. Physical aspects: (i) In the
present formulation, we kept the lowest order term with respect to the inverse aspect ratio in surface averag-
ing. The inhomogeneity in the toroidal magnetic field is included only in the neoclassical poloidal viscosity.
For quantitative analysis, we need to keep other first order terms as well as the geometric factor due to the
noncircular toroidal geometry. Further extension to the toroidal helical systems with three-dimension geom-
etry including the toroidal viscosity is also left for future studies. (ii) We have not included the neoclassical
heat flux and this neglect may be a possible cause of a discrepancy of the neoclassical effects. We have to
include the equation of neoclassical heat flux in the set of transport equations. (iii) We fixed the magnitude
and the profile of the particle and thermal turbulent diffusivities and viscosity. In order to carry out more com-
prehensive simulation, appropriate turbulent transport models should be included, such as the CDBM05
model [3] and the GLF23 model [26,41]. (iv) The transport process of neutrals should be analyzed by Monte
Carlo method and multi ion species should be dealt with for an analysis of impurity transport.

Numerical aspects: The use of a cubic Hermite spline as the interpolation function of the FEM, is one of the
way to increase the accuracy and the stability of the calculation further. The continuity of the derivative may
enhance the robustness of the TASK/TX code required for the analyses of both edge and internal transport
barriers. In order to apply the present code to a realistic tokamak plasma, we should use appropriate transport
models providing turbulent transport coefficients, which depend on the density, the temperature, the safety
factor and their derivatives. The CDBM05 model, which is able to reproduce the formation of ITB, is a
non-stiff model and thus an analysis with the CDBM05 model will be readily achieved. The stiff transport
models like the GLF23 model, however, are expected to require much smaller time step and higher accuracy;
hence the TASK/TX code with cubic Hermite function is desired for the simulation with these stiff models.
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Appendix A. Derivation of model equations

The basic equations of the TASK/TX code, Eqs. (2)–(6), are based on the set of transport equations pro-
posed by Braginskii [8].

In the cylindrical coordinates, the continuity equation for the density ~ns is given as
o~ns

ot
þ 1

r
oðr~ns~usrÞ

or
þ 1

r
oð~ns~ushÞ

oh
þ 1

R
oð~ns~us/Þ

o/
¼ eS s; ðA:1Þ
where the variables with tildes depend on h and /, eSs is the particle source term in Eqs. (22) and (23). We
integrate Eq. (A.1) over h and / to obtain a flux surface-averaged equation
ons

ot
þ 1

r
oðrnsusrÞ

or
¼ Ss; ðA:2Þ
where ns ¼ ð1=4p2Þ
R 2p

0
dh
R 2p

0
d/~ns, nsusr ¼ ð1=4p2Þ

R 2p
0

dh
R 2p

0
d/~ns~usr and Ss ¼ ð1=4p2Þ

R 2p
0

dh
R 2p

0
d/eSs.

The equations of motion given by Braginskii were combined with the continuity equation to obtain
ms
d

dt
~ns

~~us ¼ �ms~ns
~~usr � ~~us �r~ps �r � p

$
s � es½~ns

eEa þ ~ns
~~us � e~B	 þ e~Rs þ eS sms

~~us;gen; ðA:3Þ
where p
$

s is the stress tensor and e~Rs represents the mean momentum change due to collisions with all other
particles. ~~us;gen is not the flow velocity at a certain position but the velocity which the momentum source
has when particles are generated, and the last term of the right hand side vanishes under the assumption that
the mean generated velocity is zero. In the cylindrical geometry, we use the expression of the stress tensor, Eq.
(15.16) in Ref. [42], and average the above equation over h and /. We assume that the variation of the physical
quantities eX on the flux surface is small, so that high order terms with respect to eX � X may be neglected.
Thus we obtain
ms
oðnsusrÞ

ot
þ 1

r
oðrnsu2

srÞ
or

� nsu2
sh

r

� �
¼ � ops

or
� 1

r
oðrpsrrÞ

or
� pshh

r

� �
þ esnsðEr þ ushB/ � us/BhÞ þ Rsr ðA:4Þ

ms
oðnsushÞ

ot
þ 1

r
oðrnsusrushÞ

or
þ nsushusr

r

� �
¼ � 1

r2

oðr2psrhÞ
or

þ esnsðEh � usrB/Þ þ Rsh; ðA:5Þ

ms
oðnsus/Þ

ot
þ 1

r
oðrnsusrus/Þ

or

� �
¼ � 1

r
oðrpsr/Þ

or
þ esnsðE/ þ usrBhÞ þ Rs/: ðA:6Þ
In present large tokamak plasmas, a radial flow velocity is always much smaller than those in the direction of h
and /: usr 
 100 m=s, ush 
 104 m=s and us/ 
 105 m=s. Therefore the viscous force in Eq. (A.4) can be reason-
ably neglected. To obtain Eq. (3), the friction force Rsr is also neglected for the same reason.

As is the case with the radial equation of motion, we next consider the equation of motion in the h-direction
Eq. (A.5). The expression of the stress tensor psrh is given by Eq. (15.15) in Ref. [42]. Substituting it into Eq.
(A.5), we obtain
o

ot
ðnsushÞ þ

1

r2

o

or
ðr2usrnsushÞ ¼

1

r2

o

or
r3nsls

o

or
ush

r

� �� �
þ esnsðEh � usrB/Þ þ Rsh ðA:7Þ
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In addition to the momentum exchange with other particles Rh corresponding to F C
sh in our definition, we in-

clude the terms of the neoclassical force F NC
sh , the turbulent induced force F W

sh , the parallel loss F L
sh, the friction

force F N
sh and the charge exchange force F CX

sh into the equation and we finally obtain Eq. (4).
We can derive the equation of motion in the /-direction, Eq. (5), in the same manner of the derivation of

Eq. (4) except that the neoclassical effect is not included in this equation.
The energy transport equation Eq. (6) is derived on the basis of the energy conservation law and the same

as that of the conventional diffusive transport equation [43].
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